Respuesta :
Answer:
[tex](x -12)(x + 12)[/tex]
Step-by-step explanation:
Given
See attachment for chart
Required
The factors of [tex]x^2 - 144[/tex]
First, express [tex]x^2 - 144[/tex] as [tex]ax^2 + bx + c[/tex]
So, we have:
[tex]x^2 - 144 = x^2 + 0x - 144[/tex]
Compare the above expression to: [tex]ax^2 + bx + c[/tex]
We have:
[tex]ax^2 + bx + c = x^2 + 0x - 144[/tex]
So:
[tex]a =1[/tex]
[tex]b =0[/tex]
[tex]c = -144[/tex]
and
[tex]a * c = d * e[/tex]
Calculate ac
[tex]a* c = 1 * -144[/tex]
[tex]a* c = -144[/tex]
Rewrite as:
[tex]a* c = -12 * 12[/tex]
Recall that:
[tex]a * c = d * e[/tex]
Hence:
[tex]d = -12; e = 12[/tex]
So, on the x chart, we have:
ac
d e
b
This gives:
-144
-12 12
0
The factors are
[tex](x + d)(x + e)[/tex]
[tex](x -12)(x + 12)[/tex]
Answer:
✔ (x – 12)
and
✔ (x + 12)
Step-by-step explanation: