Answer:
y=0
Step-by-step explanation:
Rewrite Evaluate Powers:
3[tex]3^{2y-1}+3^{-1}+2*3^{y}*3^{-1}=1[/tex]
Calculate:
[tex](3^{y})^{2}*\frac{1}{3} +2*3^{y}*\frac{1}{3}=1[/tex]
Solve using substitution:
[tex](3^{y})^{2}*\frac{1}{3} +\frac{2}{3} *3^{y}=1[/tex] [tex]t=3^{y}[/tex]
Solve the equation for t:
[tex]t^{2}*\frac{1}{3}+\frac{2}{3}t=1[/tex]
t=-3
t=1
Substitute back to t=3^y
3^y=-3
3^y=1
y∉R
[tex]3^{y}=1[/tex]
y=0