Find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. text({)1, 1/4, 1/16, 1/64, 1/256, ... text(})

Respuesta :

Answer:

[tex]T_n = \frac{1}{4^{n-1}}[/tex]

Step-by-step explanation:

Given

[tex]({)1, 1/4, 1/16, 1/64, 1/256, ... (})[/tex]

Required

The general term

The given sequence is geometric.

So first, we calculate the common ratio (r)

[tex]r = T_2/T_1[/tex]

So, we have:

[tex]r = 1/4 \div 1[/tex]

[tex]r = 1/4[/tex]

The function is then calculated using:

[tex]T_n =T_1 * r^{n-1}[/tex]

This gives

[tex]T_n =1 * 1/4^{n-1}[/tex]

[tex]T_n = \frac{1}{4^{n-1}}[/tex]