Given:
[tex]\phi=1.618[/tex]
22nd number in Fibonacci sequence = 17,711
To find:
The 23rd number in the Fibonacci sequence.
Solution:
The nth term of a Fibonacci sequence is:
[tex]f_n=\dfrac{\phi^n-(1-\phi)^n}{\sqrt{5}}[/tex]
Substituting [tex]\phi=1.618, n=21[/tex], we get
[tex]f_{21}=\dfrac{(1.618)^{21}-(1-1.618)^{21}}{\sqrt{5}}[/tex]
[tex]f_{21}=\dfrac{(1.618)^{21}-(1-1.618)^{21}}{\sqrt{5}}[/tex]
[tex]f_{21}=10941.1724024[/tex]
[tex]f_{21}\approx 10941[/tex]
Now,
[tex]f_{23}=f_{21}+f_{22}[/tex]
[tex]f_{23}=10941+17711[/tex]
[tex]f_{23}=28652[/tex]
It is about 28,656. Therefore, the correct option is D.