Express each of the following quadratic functions in the form of f(x) = a (x - h)²+ k.Then,state the minimum or maximum value,axis of symmetry and minimum or maximum point. (a) f(x) = -2x² + 7x + 4.
Pls help me! I'll mark u as the brainliest​

Respuesta :

Given:

The function is:

[tex]f(x)=-2x^2+7x+4[/tex]

To find:

Express the quadratic equation in the form of [tex]f(x)=a(x-h)^2+k[/tex], then state the minimum or maximum value,axis of symmetry and minimum or maximum point.

Solution:

The vertex form of a quadratic function is:

[tex]f(x)=a(x-h)^2+k[/tex]              ...(i)

Where, a is a constant, (h,k) is the vertex and x=h is the axis of symmetry.

We have,

[tex]f(x)=-2x^2+7x+4[/tex]

It can be written as:

[tex]f(x)=-2\left(x^2-3.5x\right)+4[/tex]

Adding and subtracting square of half of coefficient of x inside the parenthesis, we get

[tex]f(x)=-2\left(x^2-3.5x+(\dfrac{3.5}{2})^2-(\dfrac{3.5}{2})^2\right)+4[/tex]

[tex]f(x)=-2\left(x^2-3.5x+(1.75)^2\right)-2\left(-(1.75)^2\right)+4[/tex]

[tex]f(x)=-2\left(x-1.75\right)^2+2(3.0625)+4[/tex]

[tex]f(x)=-2\left(x-1.75\right)^2+6.125+4[/tex]

[tex]f(x)=-2\left(x-1.75\right)^2+10.125[/tex]                ...(ii)

On comparing (i) and (ii), we get

[tex]a=-2,h=1.75,k=10.125[/tex]

Here, a is negative, the given function represents a downward parabola and its vertex is the point of maxima.

Maximum value = 10.125

Axis of symmetry : [tex]x=1.75[/tex]

Maximum point = (1.75,10.125)

Therefore, the vertex form of the given function is [tex]f(x)=-2\left(x-1.75\right)^2+10.125[/tex], the maximum value is 10.125, the axis of symmetry is [tex]x=1.75[/tex] and the maximum point is (1.75,10.125).