Respuesta :

Answer:

Step-by-step explanation:

The formula for this is the one we use when we are given the ratio the directed line segment is separated into as opposed to the point being, say, one-third of the way from one point to another. The 2 equations we use to find the x and y coordinates of this separating point are:

[tex]x=\frac{bx_1+ax_2}{a+b}[/tex]  and  [tex]y=\frac{by_1+ay_2}{a+b}[/tex] where x1, x2, y1, y2 come from the coordinates of A and B, and a = 1 (from the ratio) and b = 2 (from the ratio). Filling in for x first:

[tex]x=\frac{2(2)+1(-4)}{1+2}=\frac{4-4}{3}=0[/tex] and then y:

[tex]y=\frac{2(-3)+1(9)}{1+2}=\frac{-6+9}{3}=\frac{3}{3}=1[/tex]

The coordinates of point E, then, are (0, 1).

Answer:

(-1,3)

Step-by-step explanation:

Mathematically, what we have to do here is to get the coordinates of the midpoint of the line AB

we have this as;

(x,y) = (x1 + y1)/2, (y1 + y2)/2

(x,y) = (-4+2)/2, (9-3)/2 = (-1, 3)