Respuesta :

Given:

The function is:

[tex]f(x,y)=x^{10}-3xy^2[/tex]

To find:

The value of [tex]f_x[/tex].

Solution:

We need to find the value of [tex]f_x[/tex]. So, we have to find the first order partial derivative of the given function with respect to x.

We have,

[tex]f(x,y)=x^{10}-3xy^2[/tex]

Differentiate partially with respect to x.

[tex]f(x,y)=\dfrac{\partial}{\partial x}x^{10}-3y^2\dfrac{\partial}{\partial x}x[/tex]

[tex]f_x=10x^{10-1}-3y^2(1)[/tex]

[tex]f_x=10x^{9}-3y^2[/tex]

Therefore, the correct option is A.