Given:
The function is:
[tex]f(x,y)=x^{10}-3xy^2[/tex]
To find:
The value of [tex]f_x[/tex].
Solution:
We need to find the value of [tex]f_x[/tex]. So, we have to find the first order partial derivative of the given function with respect to x.
We have,
[tex]f(x,y)=x^{10}-3xy^2[/tex]
Differentiate partially with respect to x.
[tex]f(x,y)=\dfrac{\partial}{\partial x}x^{10}-3y^2\dfrac{\partial}{\partial x}x[/tex]
[tex]f_x=10x^{10-1}-3y^2(1)[/tex]
[tex]f_x=10x^{9}-3y^2[/tex]
Therefore, the correct option is A.