Respuesta :
Answer:
[tex]P = 4\sqrt{13}[/tex]
Step-by-step explanation:
Given
[tex]W = (7, 2)[/tex]
[tex]X = (5, -1)[/tex]
[tex]Y = (3, 2)[/tex]
[tex]Z =(5, 5)[/tex]
Required
The perimeter
To do this, we first calculate the side lengths using distance formula
[tex]d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2[/tex]
So, we have:
[tex]WX = \sqrt{(5- 7)^2 + (-1 - 2)^2[/tex]
[tex]WX = \sqrt{13}[/tex]
[tex]XY = \sqrt{(3-5)^2 + (2--1)^2}[/tex]
[tex]XY = \sqrt{13}[/tex]
[tex]YZ = \sqrt{(5-3)^2 + (5-2)^2}[/tex]
[tex]YZ = \sqrt{13}[/tex]
[tex]ZW = \sqrt{(7 - 5)^2 + (2 - 5)^2}[/tex]
[tex]ZW = \sqrt{13}[/tex]
The perimeter is:
[tex]P = WX + XY + YZ + ZW[/tex]
[tex]P = \sqrt{13}+\sqrt{13}+\sqrt{13}+\sqrt{13}[/tex]
[tex]P = 4\sqrt{13}[/tex]
Answer:
C on edge 2021
Step-by-step explanation:
I took the cumulative exam