Respuesta :
Answer:
a) ΔT₁ = -4.68 N, ΔT₂ = 4.68 N, b) ΔT₂ = 4.68 N, ΔT₁ = 4.68 N
Explanation:
In this exercise we will use Newton's second law.
∑F = m a
Let's start with the set of three cars
F_total = M a
F_total = M 0.12
where the total mass is the sum of the mass of each charge
M = m₁ + m₂ + m₃
This is the force with which the three cars are pulled.
Now let's write this law for each vehicle
car 1
F_total - T₁ = m₁ a
T₁ = F_total - m₁ a
car 2
T₁ - T₂ = m₂ a
T₂ = T₁ - m₂ a
car 3
T₂ = m₃ a
note that tensions are forces of action and reaction
a) They tell us that 39 kg is removed from car 2 and placed on car 1
m₂’= m₂ - 39
m₁'= m₁ + 39
m₃ ’= m₃
they ask how much each tension varies, let's rewrite Newton's equations
The total force does not change since the mass of the set is the same F_total ’= F_total
car 1
F_total ’- T₁ ’= m₁’ a
T₁ ’= F_total - m₁’ a
T₁ ’= (F_total - m₁ a) - 39 a
T₁ '= T₁ - 39 0.12
ΔT₁ = -4.68 N
car 2
T₁’- T₂ ’= m₂’ a
T₂ ’= T₁’- m₂’ a
T₂ '= (T₁'- m₂ a) + 39 a
T₂ '= T₂ + 39 0.12
ΔT₂ = 4.68 N
b) in this case the masses remain
m₁ '= m₁
m₂ ’= m₂ - 39
m₃ ’= m₃ + 39
we write Newton's equations
car 3
T₂ '= m₃' a
T₂ ’= (m₃ + 39) a
T₂ '= m₃ a + 39 a
T₂ '= T₂ + 39 0.12
ΔT₂ = 4.68 N
car 1
F_total - T₁ ’= m₁’ a
T₁ ’= F_total - m₁ a
car 2
T₁' -T₂ '= m₂' a
T₁ ’= T₂’- m₂’ a
T₁ '= (T₂'- m₂ a) + 39 a
T₁ '= T₁ + 39 0.12
ΔT₁ = 4.68 N
The tension in each of the coupling bars A, B, and C of the luggage carrier changes as,
- When luggage were removed from car 2 and placed in car 1, the tension is A and C does not change and the tension in B is decreased by 4.68 N.
- When luggage were removed from car 2 and placed in car 3, the tension is A and B does not change and the tension in C is increased by 4.68 N.
What is tension force?
Tension is the pulling force carried by the flexible mediums like ropes, cables and string.
Tension in a body due to the weight of the hanging body is the net force acting on the body.
At an airport, luggage is unloaded from a plane into the three cars of a luggage carrier, as the drawing shows. The acceleration of the carrier is 0.12 m/s², and friction is negligible.
The acceleration is the same, Tension due to the horizontal component of the forces for car 1, 2 and 3 can be given as,
[tex]\sum F_{1h}=T_A-T_B=m_1a\\\sum F_{2h}=T_B-T_C=m_2a\\\sum F_{3h}=T_C=m_3a[/tex]
On solving the above 3 equation, we get the values of tension in each bar as,
[tex]T_A=(m_1+m_2+m_3)a\\T_B=(m_3+m_2)a\\T_C=m_3a[/tex]
- Case 1- When 39 kg of luggage were removed from car 2 and placed in car I
The tension is A and C does not change for this case. The acceleration of the carrier is 0.12 m/s². Thus, the change in tension is B is,
[tex]\Delta T_B=39\times0.12\\\Delta T_B=4.68\rm \;N[/tex]
- Case 2- When 39 kg of luggage were removed from car 2 and placed in car III
The tension is A and B does not change for this case. The acceleration of the carrier is 0.12 m/s². Thus, the change in tension is B is,
[tex]\Delta T_C=39\times0.12\\\Delta T_C=4.68\rm \;N[/tex]
Hence, the tension in each of the coupling bars A, B, and C of the luggage carrier changes as,
- When luggage were removed from car 2 and placed in car 1, the tension is A and C does not change and the tension in B is decreased by 4.68 N.
- When luggage were removed from car 2 and placed in car 3, the tension is A and B does not change and the tension in C is increased by 4.68 N.
Learn more about the tension here;
https://brainly.com/question/25743940