Answer:
[tex]P(At\ least\ one\ girl) = 0.875[/tex]
Step-by-step explanation:
Given
[tex]n = 3[/tex]
[tex]B \to boys[/tex]
[tex]G \to girls[/tex]
[tex]P(G) = P(B) = 0.5[/tex] --- equal probability
See comment for complete question
Required:
[tex]P(At\ least\ one\ girl)[/tex]
To do this, we make use of complement rule:
[tex]P(At\ least\ one\ girl) = 1 - P(No\ girl)[/tex]
The event that there is no girl out of the 3 children is: B B B
And the probability is:
[tex]P(No\ Girl) = P(B) * P(B) * P(B)[/tex]
[tex]P(No\ Girl) = 0.5*0.5*0.5[/tex]
[tex]P(No\ Girl) = 0.125[/tex]
So:
[tex]P(At\ least\ one\ girl) = 1 - P(No\ girl)[/tex]
[tex]P(At\ least\ one\ girl) = 1 - 0.125[/tex]
[tex]P(At\ least\ one\ girl) = 0.875[/tex]