Answer:
<A = 47.7°
<B = 99.4°
<C = 32.9
Step-by-step explanation:
When given the measurements of all three sides, you can calculate the angles using the Cosine Law.
c² = a² + b² - 2ab cos C
(based on Pythagorean Theorem)
If we say: a = 15
b = 20
c = 11
11² = 15² + 20² - 2(15)(20) cos C
121 = 625 - 2(15)(20) cos C
121 = 625 - 600 cos C
⁻504 = ⁻600 cos C
cos⁻¹ (504 ÷ 600) = C
< C = 32.9°
a² = b² + c² - 2bc cos A
15² = 20² + 11² - 2(20)(11) cos A
225 = 521 - 2(20)(11) cos A
225 = 521 - 440 cos A
⁻296 = ⁻440 cos A
cos⁻¹ (296 ÷ 440) = A
<A = 47.7°
Then, since we know the sum of all three angles of a triangle equals 180°:
180° - 32.9° - 47.7° = 99.4°
<B = 99.4°