contestada

We have two circles A and X. The radius and perimeter of the circle A are b and c respectively.
The radius and perimeter of the circle X are y and z respectively. Consider the following ratios
K=c/b and L=Z/y.
Which of the following statements is true? *
K>L
K K=L
K=2L

Respuesta :

Answer:

[tex]K = L[/tex]

Step-by-step explanation:

Given

Circle A

[tex]r = b[/tex] --- radius

[tex]p = c[/tex] ---- perimeter

Circle B

[tex]r = y[/tex] --- radius

[tex]p =z[/tex] --- perimeter

[tex]K = \frac{c}{b}[/tex]

[tex]L = \frac{z}{y}[/tex]

Required

Select the true option

The perimeter of a circle is:

[tex]Perimeter = 2\pi r[/tex] ------ the circumference

So, we have:

[tex]c = 2\pi b[/tex] --- circle A

[tex]z = 2\pi y[/tex] --- circle B

Calculate K

[tex]K = \frac{c}{b}[/tex]

[tex]K = \frac{2\pi b}{b}[/tex]

[tex]K = 2\pi[/tex]

Calculate L

[tex]L = \frac{z}{y}[/tex]

[tex]L = \frac{2\pi y}{y}[/tex]

[tex]L = 2\pi[/tex]

So, we have:

[tex]K = L = 2\pi[/tex]