A shipment of 50 precision parts including 4 that are defective is sent to an assembly plant. The quality control division selects 10 at random for testing and rejects the entire shipment if 1 or more are found defective. What is the probability this shipment passes inspection?

Respuesta :

Answer:

0.3968 = 39.68% probability this shipment passes inspection.

Step-by-step explanation:

The parts are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.

Hypergeometric distribution:

The probability of x successes is given by the following formula:

[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]

In which:

x is the number of successes.

N is the size of the population.

n is the size of the sample.

k is the total number of desired outcomes.

Combinations formula:

[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

In this question:

50 parts means that [tex]N = 50[/tex]

4 defective means that [tex]k = 4[/tex]

10 are chosen, which means that [tex]n = 10[/tex]

What is the probability this shipment passes inspection?

Probability that none is defective, so:

[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]

[tex]P(X = 0) = h(0,50,10,4) = \frac{C_{4,0}*C_{46,10}}{C_{50,10}} = 0.3968[/tex]

0.3968 = 39.68% probability this shipment passes inspection.