Respuesta :
Answer:
The minimum value of f(x) is greater than the minimum value of g(x).
Step-by-step explanation:
Given
[tex](h_1,k_1) = (3,4)[/tex] --- vertex of f(x)
[tex]g(x) = 4(x - 4)^2 + 3[/tex] --- g(x) equation
Required
Which of the options is true
First, we identify the vertex of g(x)
A quadratic function is represented as:
[tex]g(x) =a(x - h)^2 + k[/tex]
Where:
[tex](h,k) \to[/tex] vertex
So, we have:
[tex](h_2,k_2) = (4,3)[/tex]
[tex]a = 4[/tex]
If [tex]a>0[/tex], then the curve opens upward
From the question, we understand that f(x) also open upward. This means that both functions have a minimum
The minimum is the y (or k) coordinate
So, we have:
[tex](h_1,k_1) = (3,4)[/tex] --- vertex of f(x)
[tex](h_2,k_2) = (4,3)[/tex] --- vertex of g(x)
The minimum of both are:
[tex]Minimum = 4[/tex] ---- f(x)
[tex]Minimum = 3[/tex] ---- g(x)
By comparison:
[tex]4 > 3[/tex]
Hence, f(x) has a greater minimum
Answer:
The minimum value of f(x) is greater than the minimum value of g(x).
Step-by-step explanation: