Acetic acid and water react to from hydronium cation and acetate anion, like this: HCH3CO2 (aq) + H2O (I) → H3O+(aq) + Ch3CO2-(aq)Imagine 226. mmol of CH3CO2- are added to a flask containing a mixture of HCH3CO2, H2O, H3O + and CH3CO2- at equilibrium, and then answer the following questions. 1. What is the rate of the forward reaction before any HCH3CO2 has been removed from the flask? a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction. 2. What is the rate of the forward reaction just after the HCH3CO2 has been removed from the flask?a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction.3. What is the rate of the forward reaction when the system has again reached equilibrium?a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction.

Respuesta :

Answer:

1) Greater than zero, and equal to the rate of the reverse reaction

2) Greater than zero, but less than the rate of the reverse reaction

3) Greater than zero, and equal to the rate of the reverse reaction

Explanation:

A reaction system is said to be in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.

Before we remove HCH3CO2 from the system, the system was in equilibrium. Recall that when a system is in equilibrium, the rate of forward reaction is equal to the rate of reverse reaction. The rate of reaction is greater than zero because products are being formed as the reactants interact with each other.

When HCH3CO2 is removed from the system, the equilibrium position shifts towards the left hand side hence the rate of reverse reaction is greater than the rate of forward reaction.

When the system attains equilibrium again, the rates of forward and reverse reaction become equal.