Answer:
(a) 3178
(b) 14231
(c) 33152
Step-by-step explanation:
Given
[tex]y = \frac{269573}{1+985e^{-0.308t}}[/tex]
Solving (a): Year = 1998
1998 means t = 8 i.e. 1998 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*8}}[/tex]
[tex]y = \frac{269573}{1+985e^{-2.464}}[/tex]
[tex]y = \frac{269573}{1+985*0.08509}[/tex]
[tex]y = \frac{269573}{84.81365}[/tex]
[tex]y = 3178[/tex] --- approximated
Solving (b): Year = 2003
2003 means t = 13 i.e. 2003 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*13}}[/tex]
[tex]y = \frac{269573}{1+985e^{-4.004}}[/tex]
[tex]y = \frac{269573}{1+985*0.01824}[/tex]
[tex]y = \frac{269573}{18.9664}[/tex]
[tex]y = 14213[/tex] --- approximated
Solving (c): Year = 2006
2006 means t = 16 i.e. 2006 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*16}}[/tex]
[tex]y = \frac{269573}{1+985e^{-4.928}}[/tex]
[tex]y = \frac{269573}{1+985*0.00724}[/tex]
[tex]y = \frac{269573}{8.1314}[/tex]
[tex]y = 33152[/tex] --- approximated