Answer:
Option E (143) is the appropriate solution.
Explanation:
According to the question,
The modified duration will be:
= [tex]\frac{Macaulay \ duration}{(1+yield)}[/tex]
= [tex]8\times 1.064[/tex]
= [tex]8.512[/tex]
The percentage change in price will be:
= [tex]-0.6\times 8 \ percent[/tex]
= [tex]-4.8[/tex] (%)
Now,
The EMOD will be:
= [tex]112955\times (1-4.8 \ percent)[/tex]
= [tex]107533.2[/tex] ($)
Or,
The EMAC will be:
= [tex]112955\times (\frac{1.064}{1.07} )^{8.512}[/tex]
= [tex]107675.7[/tex] ($)
Hence,
⇒ [tex]EMOD-EMAC=107533.2-107675.7[/tex]
[tex]=-142.5[/tex]
⇒ [tex]EMAC-EMOD=143[/tex]