Answer:
0.64 = 64% probability that the student passes both subjects.
0.86 = 86% probability that the student passes at least one of the two subjects
Step-by-step explanation:
Conditional Probability
We use the conditional probability formula to solve this question. It is
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
In which
P(B|A) is the probability of event B happening, given that A happened.
[tex]P(A \cap B)[/tex] is the probability of both A and B happening.
P(A) is the probability of A happening.
In this question:
Event A: Passing subject A
Event B: Passing subject B
The probability of passing subject A is 0.8.
This means that [tex]P(A) = 0.8[/tex]
If you have passed subject A, the probability of passing subject B is 0.8.
This means that [tex]P(B|A) = 0.8[/tex]
Find the probability that the student passes both subjects?
This is [tex]P(A \cap B)[/tex]. So
[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]
[tex]P(A \cap B) = P(B|A)P(A) = 0.8*0.8 = 0.64[/tex]
0.64 = 64% probability that the student passes both subjects.
Find the probability that the student passes at least one of the two subjects
This is:
[tex]p = P(A) + P(B) - P(A \cap B)[/tex]
Considering [tex]P(B) = 0.7[/tex], we have that:
[tex]p = P(A) + P(B) - P(A \cap B) = 0.8 + 0.7 - 0.64 = 0.86[/tex]
0.86 = 86% probability that the student passes at least one of the two subjects