Algebraically show that each of the given combinations are equivalent to the given functions.
h(x) • j(x) is equivalent to k(2) given:
h(x) = - 3x – 1;j(x) = – 7x + 11 ; k(x) = 21.22 – 262 – 11
h(x).j(x) = (
Is h(x).j(x) equivalent to k(x)? yes

Respuesta :

Answer:

Yes they ate Equivalent

Step-by-step explanation:

Given the expression

h(x) = - 3x – 1;j(x) = – 7x + 11 ; k(x) = 21.22 – 262 – 11

H(x)•j(x) = (-3x-1)(-7x+11)

H(x)•j(x) = (-3x)(-7x)-3x(11)-1(-7x)(-1)(11)

H(x)•j(x) = 21x²-33x+7x-11

H(x)•j(x) = 21x²-26x-11

This shows that H(x)•j(x) = k(x)