Note: Consider the given figure attached with this question.
Given:
The expression is:
[tex]2^5\times 2^4[/tex]
To find:
The equivalent expression.
Solution:
We have,
[tex]2^5\times 2^4[/tex]
It can be written as:
[tex]2^5\times 2^4=2^{5+4}[/tex]
[tex]2^5\times 2^4=2^{9}[/tex]
So, option A is correct and option B is incorrect.
Similarly, in options C, D, E,
[tex]2\cdot 2^9=2^{10}[/tex]
[tex]2^{10}\cdot 2^2=2^{12}[/tex]
[tex]2^{-2}\cdot 2^{11}=2^{9}[/tex]
So, options C and D are incorrect but option E is correct.
The given expression can be written as:
[tex](2\cdot 2\cdot 2\cdot 2\cdot 2)\cdot (2\cdot 2\cdot 2\cdot 2)[/tex]
So, option F is correct.
Therefore, the correct options are A, E F.