Given:
In the given figure [tex]m\parallel n\parallel p[/tex].
[tex]m\angle 10=2x+70[/tex]
[tex]m\angle 7=5x-20[/tex]
To find:
The [tex]m\angle 3[/tex].
Solution:
If a transversal line intersect two parallel lines, then the alternate exterior angles are equal.
[tex]m\angle 7=m\angle 10[/tex] (Alternate exterior angle)
[tex]2x+70=5x-20[/tex]
[tex]70+20=5x-2x[/tex]
[tex]90=3x[/tex]
Divide both sides by 3.
[tex]\dfrac{90}{3}=\dfrac{3x}{3}[/tex]
[tex]30=x[/tex]
Now,
[tex]m\angle 3=m\angle 7[/tex] (Corresponding angles)
[tex]m\angle 3=5x-20[/tex]
[tex]m\angle 3=5(30)-20[/tex]
[tex]m\angle 3=150-20[/tex]
[tex]m\angle 3=130[/tex]
Therefore, the measure of angle 3 is 130 degrees.