Respuesta :

Given:

In the given figure [tex]m\parallel n\parallel p[/tex].

[tex]m\angle 10=2x+70[/tex]

[tex]m\angle 7=5x-20[/tex]

To find:

The [tex]m\angle 3[/tex].

Solution:

If a transversal line intersect two parallel lines, then the alternate exterior angles are equal.

[tex]m\angle 7=m\angle 10[/tex]          (Alternate exterior angle)

[tex]2x+70=5x-20[/tex]

[tex]70+20=5x-2x[/tex]

[tex]90=3x[/tex]

Divide both sides by 3.

[tex]\dfrac{90}{3}=\dfrac{3x}{3}[/tex]

[tex]30=x[/tex]

Now,

[tex]m\angle 3=m\angle 7[/tex]               (Corresponding angles)

[tex]m\angle 3=5x-20[/tex]

[tex]m\angle 3=5(30)-20[/tex]

[tex]m\angle 3=150-20[/tex]

[tex]m\angle 3=130[/tex]

Therefore, the measure of angle 3 is 130 degrees.