Answer:
[tex]P(x < -778) = 0[/tex]
Step-by-step explanation:
Given
[tex]\bar x = 48673[/tex]
[tex]\sigma^2 = 11282880[/tex]
[tex]n = 143[/tex]
Required
[tex]P(x <- 778)[/tex]
First, we calculate the z score
[tex]z = \frac{x}{\sqrt{\sigma^2}/n}[/tex]
So, we have:
[tex]z = \frac{-778}{\sqrt{11282880}/143}[/tex]
[tex]z = \frac{-778}{3359.0/143}[/tex]
[tex]z = \frac{-778}{23.49}[/tex]
[tex]z = -33.12[/tex]
So:
[tex]P(x < -778) = P(z < -33.12)[/tex]
From z score probability, we have:
[tex]P(x < -778) = 0[/tex]