Respuesta :
Answer:
y = [tex]\frac{-8}{3}[/tex]x + [tex]\frac{62}{3}[/tex]
Step-by-step explanation:
Use slope formula.
then substitute slope for m in y = mx + b
pick a set of coordinates and substitute them in for x and y.
Solve for b
Answer:
[tex]y=-\frac{8}{3}x+\frac{62}{3}[/tex]
Step-by-step explanation:
Hi there!
Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x is 0)
1) Determine the slope (m)
[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the points (7,2) and (10,-6)
[tex]m=\frac{2-(-6)}{7-10}\\m=\frac{2+6}{7-10}\\m=\frac{8}{-3}[/tex]
Therefore, the slope of the line is [tex]-\frac{8}{3}[/tex]. Plug this into [tex]y=mx+b[/tex]:
[tex]y=-\frac{8}{3}x+b[/tex]
2) Determine the y-intercept (b)
[tex]y=-\frac{8}{3}x+b[/tex]
Plug in one of the given points and solve for b
[tex]2=-\frac{8}{3}(7)+b\\2=-\frac{56}{3}+b[/tex]
Add [tex]\frac{56}{3}[/tex] to both sides to isolate b
[tex]2+\frac{56}{3}=-\frac{56}{3}+b+\frac{56}{3}\\\frac{62}{3}=b[/tex]
Therefore, the y-intercept is [tex]\frac{62}{3}[/tex]. Plug this back into [tex]y=-\frac{8}{3}x+b[/tex]:
[tex]y=-\frac{8}{3}x+\frac{62}{3}[/tex]
I hope this helps!