Respuesta :

Answer:

y  =  [tex]\frac{-8}{3}[/tex]x + [tex]\frac{62}{3}[/tex]

Step-by-step explanation:

Use slope formula.

then substitute slope for m in y = mx + b

pick a set of coordinates and substitute them in for x and y.

Solve for b

Answer:

[tex]y=-\frac{8}{3}x+\frac{62}{3}[/tex]

Step-by-step explanation:

Hi there!

Slope-intercept form: [tex]y=mx+b[/tex] where m is the slope and b is the y-intercept (the value of y when x is 0)

1) Determine the slope (m)

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]

Plug in the points (7,2) and (10,-6)

[tex]m=\frac{2-(-6)}{7-10}\\m=\frac{2+6}{7-10}\\m=\frac{8}{-3}[/tex]

Therefore, the slope of the line is [tex]-\frac{8}{3}[/tex]. Plug this into [tex]y=mx+b[/tex]:

[tex]y=-\frac{8}{3}x+b[/tex]

2) Determine the y-intercept (b)

[tex]y=-\frac{8}{3}x+b[/tex]

Plug in one of the given points and solve for b

[tex]2=-\frac{8}{3}(7)+b\\2=-\frac{56}{3}+b[/tex]

Add [tex]\frac{56}{3}[/tex] to both sides to isolate b

[tex]2+\frac{56}{3}=-\frac{56}{3}+b+\frac{56}{3}\\\frac{62}{3}=b[/tex]

Therefore, the y-intercept is [tex]\frac{62}{3}[/tex]. Plug this back into [tex]y=-\frac{8}{3}x+b[/tex]:

[tex]y=-\frac{8}{3}x+\frac{62}{3}[/tex]

I hope this helps!

ACCESS MORE
EDU ACCESS
Universidad de Mexico