Answer:
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.
Explanation:
By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:
[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)
[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)
Where:
[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.
[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.
[tex]f_{s}[/tex] - Static friction force, in newtons.
[tex]f_{k}[/tex] - Kinetic friction force, in newtons.
[tex]m[/tex] - Mass, in kilograms.
[tex]g[/tex] - Gravitational constant, in meters per square second.
If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:
[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{s} = 0.273[/tex]
[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{k} = 0.181[/tex]
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.