In parallelogram BCDE if m
C
B
70
50°
E

Answer:
[tex]x=130[/tex]
Step-by-step explanation:
Opposite angles of a parallelogram are equal
EBC = 50° while, CDE = 50° too
Area of a parallelogram is 360°
Suppose, BCD to be x too, & form an equation:
[tex]50+50+x+x=360[/tex]
[tex]100+2x=360[/tex]
[tex]2x=360-100[/tex]
[tex]2x=260[/tex]
[tex]x=260/2[/tex]
[tex]x=130[/tex]
{CHECK: [tex]130+130+50+50=360^{o}[/tex]}
Answer:
m∠DEB = 130°
Step-by-step explanation:
Key: Only two angles are congruent because of the parallelogram
Since m∠EBC = 50° m∠CDE = 50°
Then we are missing m∠BCD and m∠DEB
50 + 50 + m∠BCD + m∠DEB = 360°
100 + m∠BCD + m∠DEB = 360°
m∠BCD + m∠DEB = 360 - 100
m∠BCD + m∠DEB = 260
m∠BCD + m∠DEB = 260/2
m∠BCD + m∠DEB = 130°
m∠BCD and m∠DEB = 130°