Answer:
(a) [tex]\frac{P_{250k}}{P_{2000k}}=2.4\ x\ 10^{-4}[/tex]
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:
[tex]P = \sigma AT^4[/tex]
where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:
[tex]\frac{P_{250k}}{P_{2000k}}=\frac{\sigma A(250)^4}{\sigma A(2000)^4}\\\\\frac{P_{250k}}{P_{2000k}}=2.4\ x\ 10^{-4}[/tex]
(b)
Now, for 90% radiator blackbody at 2000 K:
[tex]P = (0.9)(5.67\ x\ 10^{-8}\ W/m^2.K^4)(1\ x\ 10^{-6}\ m^2)(2000\ K)^4[/tex]
P = 0.816 Watt