Answer:
V = 8796.45 [tex]cm^3[/tex]
Step-by-step explanation:
Given data :
A lamp shade is in the form of a frustum of a cone.
The upper diameter of the cone, r = 10 cm
The lower diameter of the cone, R = 20 cm
The height of the frustum, h = 12 cm
Therefore, the volume of the frustum of cone is given by :
[tex]V = \frac{1}{3} \pi H ( R^2 + Rr+r^2)[/tex]
Putting the values, we get
[tex]V = \frac{1}{3} \pi \times 12 [( 20)^2 + (20)(10)+(10)^2][/tex]
[tex]$V=4 \pi[400 + 200+100]$[/tex]
[tex]$V=4 \pi[700]$[/tex]
V = 8796.45 [tex]cm^3[/tex]
Thus the volume of the frustum of cone is V = 8796.45 [tex]cm^3[/tex]