Respuesta :

Step-by-step explanation:

Starting out with the Taylor series,

[tex]\displaystyle f(x) = \sum_{n=0}^{\infty} \dfrac{f^{(n)}(a)}{n!}(x-a)^n[/tex]

where [tex]f^{(n)}[/tex] is the nth derivative of f(x) and if we set a = 0, we get the special case of the Taylor series called the Maclaurin series:

[tex]\displaystyle f(x) = \sum_{n=0}^{\infty} \dfrac{f^{(n)}(0)}{n!}x^n[/tex]

Expanding this series up to the 1st 3 terms at a = 0,

[tex]f(x) = f(0) + \dfrac{f'(0)}{1!}x + \dfrac{f''(0)}{2!}x^2[/tex]

Let's find the derivatives of [tex]e^{\frac{x}{2}}[/tex]:

[tex]f'(x) = \frac{d}{dx} (e^{\frac{x}{2}}) = \frac{1}{2}e^{\frac{x}{2}} \Rightarrow f'(0) = \frac{1}{2}[/tex]

[tex]f''(x) = \frac{1}{4}e^{\frac{x}{2}} \Rightarrow f''(0) = \frac{1}{4}[/tex]

We can now write the Maclaurin series for [tex]e^{\frac{x}{2}}[/tex]as

[tex]e^{\frac{x}{2}} = 1 + \frac{1}{2} x + \frac{1}{8} x^2[/tex]

ACCESS MORE