Answer:
[tex]y=-11x-16[/tex]
Step-by-step explanation:
We want to find the equation of the tangent line to the function:
[tex]f(x)=4x^2+5x[/tex]
At the point (-2, 6).
First, we will need the slope of the tangent line. So, differentiate* the function:
[tex]f'(x)=8x+5[/tex]
Find the slope when x = -2:
[tex]f'(-2)=8(-2)+5=-11[/tex]
Now, we can use the point-slope form:
[tex]y-y_1=m(x-x_1)[/tex]
Our point is (-2, 6) and our slope is -11. Substitute:
[tex]y-(6)=-11(x-(-2))[/tex]
Simplify:
[tex]y-6=-11(x+2)[/tex]
Distribute:
[tex]y-6=-11x-22[/tex]
And add six to both sides. Therefore, our equation is:
[tex]y=-11x-16[/tex]
If you have not yet learned differentiation, here's the method using the difference quotient! The difference quotient is given by:
[tex]\displaystyle f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}[/tex]
Here, x = -2. Substitute:
[tex]\displaystyle f'(-2)=\lim_{h\to 0}\frac{f(-2+h)-f(-2)}{h}[/tex]
Substitute (we are given the point (-2, 6). So, f(-2) = 6).
[tex]\displaystyle f'(-2)=\lim_{h\to 0}\frac{(4(-2+h)^2+5(-2+h))-(6)}{h}[/tex]
Expand and simplify:
[tex]\displaystyle f'(-2)=\lim_{h\to 0}\frac{(4(4-4h+h^2)+(-10+5h))-(6)}{h}[/tex]
Distribute:
[tex]\displaystyle f'(-2)=\lim_{h\to 0}\frac{16-16h+4h^2-10+5h-6}{h}[/tex]
Simplify:
[tex]\displaystyle f'(-2)=\lim_{h\to 0}\frac{4h^2-11h}{h}[/tex]
Evaluate the limit (using direct substitution):
[tex]\displaystyle f'(-2) = \lim_{h\to 0}4h-11=4(0)-11=-11[/tex]