Respuesta :

Answer:

[tex]\int\limits {\int\limits_R {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42} -\frac{43}{2}[/tex]

Step-by-step explanation:

Given

[tex]x - y = 0[/tex]

[tex]x - y = 7[/tex]

[tex]x + y = 0[/tex]

[tex]x + y = 6[/tex]

Required

Evaluate [tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA[/tex]

Let:

[tex]u=x+y[/tex]

[tex]v =x - y[/tex]

Add both equations

[tex]2x = u + v[/tex]

[tex]x = \frac{u+v}{2}[/tex]

Subtract both equations

[tex]2y = u-v[/tex]

[tex]y = \frac{u-v}{2}[/tex]

So:

[tex]x = \frac{u+v}{2}[/tex]

[tex]y = \frac{u-v}{2}[/tex]

R is defined by the following boundaries:

[tex]0 \le u \le 6[/tex]  ,  [tex]0 \le v \le 7[/tex]

[tex]u=x+y[/tex]

[tex]\frac{du}{dx} = 1[/tex]

[tex]\frac{du}{dy} = 1[/tex]

[tex]v =x - y[/tex]

[tex]\frac{dv}{dx} = 1[/tex]

[tex]\frac{dv}{dy} = -1[/tex]

So, we can not set up Jacobian

[tex]j(x,y) =\left[\begin{array}{cc}{\frac{du}{dx}}&{\frac{du}{dy}}\\{\frac{dv}{dx}}&{\frac{dv}{dy}}\end{array}\right][/tex]

This gives:

[tex]j(x,y) =\left[\begin{array}{cc}{1&1\\1&-1\end{array}\right][/tex]

Calculate the determinant

[tex]det\ j = 1 * -1 - 1 * -1[/tex]

[tex]det\ j = -1-1[/tex]

[tex]det\ j = -2[/tex]

Now the integral can be evaluated:

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA[/tex] becomes:

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{x^2 - y^2}} \, *\frac{1}{|det\ j|} * dv\ du[/tex]

[tex]x^2 - y^2 = (x + y)(x-y)[/tex]

[tex]x^2 - y^2 = uv[/tex]

So:

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{|det\ j|}\, dv\ du[/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *|\frac{1}{-2}|\, dv\ du[/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \int\limits^6_0 {\int\limits^7_0 {7ue^{uv}} *\frac{1}{2}\, dv\ du[/tex]

Remove constants

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 {\int\limits^7_0 {ue^{uv}} \, dv\ du[/tex]

Integrate v

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 \frac{1}{u} * {ue^{uv}} |\limits^7_0 du[/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 e^{uv} |\limits^7_0 du[/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 [e^{u*7} - e^{u*0}]du[/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2}\int\limits^6_0 [e^{7u} - 1]du[/tex]

Integrate u

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7u} - u]|\limits^6_0[/tex]

Expand

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6} - 6) -(\frac{1}{7}e^{7*0} - 0)][/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * ([\frac{1}{7}e^{7*6} - 6) -\frac{1}{7}][/tex]

Open bracket

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6} - 6 -\frac{1}{7}][/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{7*6} -\frac{43}{7}][/tex]

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{7}{2} * [\frac{1}{7}e^{42} -\frac{43}{7}][/tex]

Expand

[tex]\int\limits {\int\limits {7(x + y)e^{x^2 - y^2}} \, dA = \frac{1}{2}e^{42} -\frac{43}{2}[/tex]

ACCESS MORE