Answer:
[tex]P = (3,0)[/tex]
Step-by-step explanation:
Given
[tex]A = (-3,-2)[/tex] ---- [tex](x_1,y_1)[/tex]
[tex]B = (6,1)[/tex] --- [tex](x_2,y_2)[/tex]
[tex]m:n =2:1[/tex]
Required
The coordinates of P
This is calculated as:
[tex]P = (\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}][/tex]
So:
[tex]P = (\frac{2*6+1*-3}{2+1},\frac{2*1+1*-2}{2+1})[/tex]
[tex]P = (\frac{9}{3},\frac{0}{3})[/tex]
[tex]P = (3,0)[/tex]