Write the general polynomial p(x) if its only zeros are 1,4, and -3, with multiplicities 3,2, and 1, respectively. What is its degree? Find p(x) precisely if p(0)=16.

Respuesta :

Answer:

[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex] --- General polynomial

The degree is 6

[tex]p(x) = -\frac{1}{3}(x -1)^{3} * (x -4)^{2} * (x +3)[/tex] --- The polynomial precisely

Step-by-step explanation:

Given

[tex](a,b,c)= (1,4,-3)[/tex] --- zeros

[tex](m_1,m_2,m_3) =(3,2,1)[/tex] --- multiplicities

Solving (a): The polynomial

The polynomial is represented as:

[tex]p(x) = (x -a)^{m_1} * (x -b)^{m_2} * (x -c)^{m_3}[/tex]

So, we have:

[tex]p(x) = (x -1)^{3} * (x -4)^{2} * (x +3)^{1}[/tex]

[tex]p(x) = (x -1)^{3} * (x -4)^{2} * (x +3)[/tex]

Include constant k; So, the polynomial becomes

[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]

Solving (b): The degree (d)

To do this, add up the multiplicities

[tex]d = m_1 +m_2 +m_3[/tex]

[tex]d = 3+2+1[/tex]

[tex]d = 6[/tex]

The degree is 6

Solving (c): The actual polynomial

In (a), we have:

[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]

[tex]p(0)=16[/tex] means:

[tex](x,p(x)) = (0,16)[/tex]

This gives:

[tex]16 = k(0 -1)^{3} * (0 -4)^{2} * (0 +3)[/tex]

[tex]16 = k(-1)^{3} * (-4)^{2} * (3)[/tex]

[tex]16 = k*-48[/tex]

Solve for k

[tex]k = \frac{16}{-48}[/tex]

[tex]k = -\frac{1}{3}[/tex]

So:

[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]

[tex]p(x) = -\frac{1}{3}(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]

ACCESS MORE
EDU ACCESS