Answer:
[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex] --- General polynomial
The degree is 6
[tex]p(x) = -\frac{1}{3}(x -1)^{3} * (x -4)^{2} * (x +3)[/tex] --- The polynomial precisely
Step-by-step explanation:
Given
[tex](a,b,c)= (1,4,-3)[/tex] --- zeros
[tex](m_1,m_2,m_3) =(3,2,1)[/tex] --- multiplicities
Solving (a): The polynomial
The polynomial is represented as:
[tex]p(x) = (x -a)^{m_1} * (x -b)^{m_2} * (x -c)^{m_3}[/tex]
So, we have:
[tex]p(x) = (x -1)^{3} * (x -4)^{2} * (x +3)^{1}[/tex]
[tex]p(x) = (x -1)^{3} * (x -4)^{2} * (x +3)[/tex]
Include constant k; So, the polynomial becomes
[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]
Solving (b): The degree (d)
To do this, add up the multiplicities
[tex]d = m_1 +m_2 +m_3[/tex]
[tex]d = 3+2+1[/tex]
[tex]d = 6[/tex]
The degree is 6
Solving (c): The actual polynomial
In (a), we have:
[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]
[tex]p(0)=16[/tex] means:
[tex](x,p(x)) = (0,16)[/tex]
This gives:
[tex]16 = k(0 -1)^{3} * (0 -4)^{2} * (0 +3)[/tex]
[tex]16 = k(-1)^{3} * (-4)^{2} * (3)[/tex]
[tex]16 = k*-48[/tex]
Solve for k
[tex]k = \frac{16}{-48}[/tex]
[tex]k = -\frac{1}{3}[/tex]
So:
[tex]p(x) = k(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]
[tex]p(x) = -\frac{1}{3}(x -1)^{3} * (x -4)^{2} * (x +3)[/tex]