The point (5,-12) lies on the terminal side of an angel theta in standard position. Find the exact value of cot theta. Express the answer as a fraction reduced to the lowest term

Respuesta :

Answer:

[tex]cot\theta=-\frac{5}{12}[/tex]

Step-by-step explanation:

We are given that the point (5,-12) lies on the terminal side of an angle theta in standard position.

We have to find the exact value of [tex]cot\theta[/tex].

Let

Point (x,y)=(5,-12)

[tex]r=\sqrt{x^2+y^2}[/tex]

Substitute the values

[tex]r=\sqrt{5^2+(-12)^2}[/tex]

[tex]r=\sqrt{169}=13[/tex]

We know that

[tex]cot\theta=\frac{x}{y}[/tex]

Using values

[tex]cot\theta=-\frac{5}{12}[/tex]

ACCESS MORE