Given:
Radius of a circle = 21 m
Area of a sector of the circle = 27.72 m²
To find:
The angle at the center of the circle.
Solution:
The area of a second is:
[tex]A=\pi r^2\times \dfrac{\theta}{360^\circ}[/tex]
Where, r is the radius of the circle and [tex]\theta[/tex] is the central angle.
Putting [tex]\pi=\dfrac{22}{7},\ r=21,\ A=27.72[/tex] in the above formula, we get
[tex]27.72=\dfrac{22}{7}\times (21)^2\times \dfrac{\theta}{360^\circ}[/tex]
[tex]27.72=1386\times \dfrac{\theta}{360^\circ}[/tex]
[tex]27.72=3.85^\circ \times \theta[/tex]
[tex]\dfrac{27.72}{3.85^\circ }=\theta[/tex]
[tex]7.2^\circ=\theta[/tex]
Therefore, the central angle of the sector is [tex]7.2^\circ[/tex].