Respuesta :

Given:

In [tex]\Delta QRS, \overline{QR}\cong \overline{SQ}[/tex] and [tex]m\angle Q=114^\circ[/tex].

To find:

The [tex]m\angle S[/tex].

Solution:

In [tex]\Delta QRS[/tex],

[tex]\overline{QR}\cong \overline{SQ}[/tex]

It means the triangle QRS is an isosceles triangle. We know that the base angles of an isosceles triangle are congruent and their measures are equal.

[tex]\angle R\cong \angle S[/tex]      [Base angles of isosceles triangle QRS]

[tex]m\angle R=m\angle S[/tex]            ...(i)

In [tex]\Delta QRS[/tex],

[tex]m\angle Q+m\angle R+m\angle S=180^\circ[/tex]

[tex]m\angle Q+m\angle S+m\angle S=180^\circ[/tex]        [Using (i)]

[tex]114^\circ+2m\angle S=180^\circ[/tex]

[tex]2m\angle S=180^\circ-114^\circ[/tex]

[tex]2m\angle S=66^\circ[/tex]

Divide both sides by 2.

[tex]m\angle S=\dfrac{66^\circ}{2}[/tex]

[tex]m\angle S=33^\circ[/tex]

Therefore, the [tex]m\angle S[/tex] is 33 degrees.

ACCESS MORE