Helppppppp me please

Given:
In [tex]\Delta QRS, \overline{QR}\cong \overline{SQ}[/tex] and [tex]m\angle Q=114^\circ[/tex].
To find:
The [tex]m\angle S[/tex].
Solution:
In [tex]\Delta QRS[/tex],
[tex]\overline{QR}\cong \overline{SQ}[/tex]
It means the triangle QRS is an isosceles triangle. We know that the base angles of an isosceles triangle are congruent and their measures are equal.
[tex]\angle R\cong \angle S[/tex] [Base angles of isosceles triangle QRS]
[tex]m\angle R=m\angle S[/tex] ...(i)
In [tex]\Delta QRS[/tex],
[tex]m\angle Q+m\angle R+m\angle S=180^\circ[/tex]
[tex]m\angle Q+m\angle S+m\angle S=180^\circ[/tex] [Using (i)]
[tex]114^\circ+2m\angle S=180^\circ[/tex]
[tex]2m\angle S=180^\circ-114^\circ[/tex]
[tex]2m\angle S=66^\circ[/tex]
Divide both sides by 2.
[tex]m\angle S=\dfrac{66^\circ}{2}[/tex]
[tex]m\angle S=33^\circ[/tex]
Therefore, the [tex]m\angle S[/tex] is 33 degrees.