Solve each triangle. Round your answers to the nearest tenth.

Answer: The value of [tex]\angle B[/tex] is [tex]30^o[/tex], the length of BC and AC is 28 units and 25 units respectively.
Step-by-step explanation:
To calculate the value of each part of the triangle, we use:
1) Angle sum property
2) Law of sines
Starting with 1:
Calculating [tex]\angle B[/tex] by angle sum property:
[tex]\angle A+\angle B+\angle C=180^o\\\\34^o+\angle B+116^o=180^o\\\\\angle B=(180^o-116^o-34^o)=30^o[/tex]
Applying 2:
The Law of sines relates the length of the side with the sines of the angle opposite to it.
[tex]\frac{\sin 34^o}{BC}=\frac{\sin 116^o}{45}\\\\BC=\frac{\sin 34^o\times 45}{\sin 116^o}\\\\BC=28units[/tex]
Similarly,
[tex]\frac{\sin 30^o}{AC}=\frac{\sin 116^o}{45}\\\\AC=\frac{\sin 30^o\times 45}{\sin 116^o}\\\\AC=25units[/tex]
Hence, the value of [tex]\angle B[/tex] is [tex]30^o[/tex], the length of BC and AC is 28 units and 25 units respectively.