Answer:
21
Explanation:
Given that:
The utility function U(x, y) = [tex]x^{0.8} y^{0.2}[/tex]
The budget line income is:
105=4x +3y
The equation MRTS is:
[tex]\dfrac{MU_x}{MU_y } =\dfrac{ Px}{Py}[/tex]
where;
[tex]MU_x(x,y) = 0.8 \times x^{0.8-1}\times y^{0.2} \\ \\ \implies 0.8 \times x^{-0.2}\times y^{0.2}[/tex]
[tex]MU_y(x,y) = 0.2 \times x^{0.8}\times y^{0.2-1} \\ \\ \implies 0.8 \times x^{0.8}\times y^{-0.8}[/tex]
and:
[tex]P_y= 3[/tex]
[tex]P_x = 4[/tex]
∴
Using the equation MRTS:
[tex]\dfrac{MU_x}{MU_y } =\dfrac{ Px}{Py}[/tex]
[tex]\dfrac{ 0.8 \times x^{-0.2}\times y^{0.2} }{0.8 \times x^{0.8}\times y^{-0.8}} = \dfrac{4}{3}[/tex]
[tex]\dfrac{4y }{x} = \dfrac{4}{3}[/tex]
4x = 12y
x = 12y/4
x = 3y
Replacing the value of x into the budget line income, we have:
105 = 4x + 3y
105 = 4(3y) + 3y
105 = 12y + 3y
105 = 15y
y = 105/15
y = 7
Then, from x = 3y
x = 3(7)
x = 21
Thus, she will consume 21 gapefruits