Answer:
[tex](a)\ (x+6)^2 + (y-5)^2 = 25[/tex]
[tex](b)\ Area = 16.75cm^2[/tex]
Step-by-step explanation:
Solving (a):
Given
[tex](a,b) = (-6,5)[/tex]
[tex]r = 5[/tex]
Required
The equation of the circle
This is calculated as:
[tex](x-a)^2 + (y-b)^2 = r^2[/tex]
So, we have:
[tex](x--6)^2 + (y-5)^2 = 5^2[/tex]
[tex](x+6)^2 + (y-5)^2 = 25[/tex]
Solving (b):
Given
[tex]r = 8cm[/tex]
[tex]\theta = 30^o[/tex] --- Missing from the question
Required
The area of the sector
This is calculated using:
[tex]Area = \frac{\theta}{360} * \pi r^2[/tex]
So, we have:
[tex]Area = \frac{30}{360} * 3.14 * 8^2[/tex]
[tex]Area = \frac{1}{12} * 200.96[/tex]
[tex]Area = 16.75cm^2[/tex]