Answer:
[tex](a)\ 6m(3m + 21) = 9(2m^2 + 14m)[/tex]
(b) Yes, it is divisible by 9
Step-by-step explanation:
Given
[tex]6m(3m + 21)[/tex]
Solving (a): Complete the blanks
[tex]6m(3m + 21) = 9 [\ ][/tex]
Expand the bracket
[tex]6m(3[m + 7]) = 9 [\ ][/tex]
[tex]6m*3(m + 7) = 9 [\ ][/tex]
Express 6m as 2m * 3
[tex]2m*3*3(m + 7) = 9 [\ ][/tex]
[tex]2m*9(m + 7) = 9 [\ ][/tex]
Rewrite as:
[tex]9 * 2m(m + 7) = 9 [\ ][/tex]
Multiply the bracket by 2m
[tex]9 * (2m^2 + 14m) = 9 [\ ][/tex]
Divide both sides by 9
[tex]2m^2 + 14m = [\ ][/tex]
Hence, the bracket will be filled with: [tex]2m^2 + 14m[/tex]
So:
[tex]6m(3m + 21) = 9(2m^2 + 14m)[/tex]
Solving (b): Is [tex]6m(3m + 21)[/tex] divisible by 9?
In (a), we have:
[tex]6m(3m + 21) = 9(2m^2 + 14m)[/tex]
The leading factor "9" implies that the expression is divisible by 9