Respuesta :
Answer:
The speed she must have at point 3 is approximately 21.72 m/s
Explanation:
The given parameters are;
The radius of the track, r = 3.25 m
The speed with which the driver goes past point 1, v₁ = 20.2 m/s
Let, 'm', represent the mass of the driver and the car, and let v₃ represent the velocity at point 3, based on the diagram and solution method from a similar question online, we have;
At point 1, The net force, [tex]F_{NET} = F_N - F_g[/tex]
The net force, [tex]F_{NET}[/tex], is the centrifugal force, therefore;
[tex]F_{NET} = \dfrac{m \cdot v_1^2}{r}[/tex]
[tex]F_g[/tex] = The force of gravity on the car (the weight of the car) = m·g
[tex]F_N_1[/tex] = The normal reaction at point 1
Therefore, we have;
[tex]F_{NET} = \dfrac{m \cdot v_1^2}{r} = F_N_1 - F_g = F_N_1 - m \cdot g[/tex]
[tex]F_N_1= \dfrac{m \cdot v_1^2}{r} + m \cdot g = m\cdot \left(\dfrac{ v_1^2}{r} + g \right)[/tex]
[tex]F_N_1 = m\cdot \left(\dfrac{ v_1^2}{r} + g \right)[/tex]
At point 3, The net force, [tex]F_{NET} = F_N_3 + F_g[/tex]
Where;
[tex]F_{N3}[/tex] = The normal reaction at point 3
Therefore;
[tex]F_N_3= F_{NET} - F_g = \dfrac{m \cdot v_3^2}{r} - m \cdot g = m\cdot \left(\dfrac{ v_3^2}{r} - g \right)[/tex]
For the normal force to be the same, we get;
[tex]F_{N1} = F_{N3}[/tex]
Therefore;
[tex]m\cdot \left(\dfrac{ v_1^2}{r} + g \right) = m\cdot \left(\dfrac{ v_3^2}{r} - g \right)[/tex]
[tex]\left(\dfrac{ v_1^2}{r} + g \right) = \left(\dfrac{ v_3^2}{r} - g \right)[/tex]
[tex]v_3^2 = r \times \left(\dfrac{ v_1^2}{r} + g + g \right) = v_1^2 + 2\cdot g \cdot r[/tex]
[tex]v_3 = \sqrt{v_1^2 + 2\cdot g \cdot r}[/tex]
Where;
g = The acceleration due to gravity ≈ 9.81 m/s²
Therefore;
v₃ = √(20.2² + 2 × 9.81 × 3.25) ≈ 21.72 m/s
The speed she must have at point 3, so that the normal force at the top has the same magnitude as it did at the bottom, v₃ ≈ 21.72 m/s