A yard in the shape of a square measures a ft on each side. A flower bed is dug up in the shape of a triangle with a/4 ft height of the triangle and a/2 ft base of the triangle. How much yard area is left over?

Respuesta :

Answer:

[tex]A_X=\frac{15x^2}{16}[/tex]

Step-by-step explanation:

From the question we are told that:

Base of Flower bed [tex]b=\frac{x}{2}[/tex]

Height of Flower bed [tex]h=\frac{x}{4}[/tex]

Generally the equation for Area of garden left A_X is mathematically given by

 [tex]A_X=Area\ of\ Garden\ A_g\ - Area\ of\ flower\ bed\ A_f[/tex]

Where

 [tex]A_f=b*h[/tex]

 [tex]A_f=\frac{1}{2}*\frac{x}{2}*\frac{x}{4}[/tex]

 [tex]A_f=\frac{x^2}{16}[/tex]

Therefore

 [tex]A_X= A_g - A_f[/tex]

 [tex]A_X=x^2-\frac{x^2}{16}[/tex]

 [tex]A_X=\frac{15x^2}{16}[/tex]

ACCESS MORE