These two polygons are similar. In the spaces below, enter the values of a, b, m

Given:
The two polygons are similar.
To find:
The value of [tex]a,\ b,\ m\angle C,\ m\angle D[/tex].
Solution:
We know that the corresponding side of similar figures are proportional. So,
[tex]\dfrac{5}{4}=\dfrac{5.39}{a}[/tex]
[tex]1.25=\dfrac{5.39}{a}[/tex]
[tex]a=\dfrac{5.39}{1.25}[/tex]
[tex]a=4.312[/tex]
Similarly,
[tex]\dfrac{5}{4}=\dfrac{5.83}{b}[/tex]
[tex]1.25=\dfrac{5.83}{b}[/tex]
[tex]b=\dfrac{5.83}{1.25}[/tex]
[tex]b=4.664[/tex]
We know that the corresponding angles of similar figures are congruent and their measures are equal. So,
[tex]m\angle C=99.2^\circ[/tex]
[tex]m\angle D=149^\circ[/tex]
Therefore, [tex]a=4.312\text{ units},\ b=4.664\text{ units},\ m\angle C=99.2^\circ,\ m\angle D=149^\circ[/tex].