Answer:
Option A , should not be rejected
Step-by-step explanation:
From the question we are told that:
Sample 1 [tex]n=25[/tex]
Standard deviation 1 [tex]\sigma_1=30[/tex]
Sample 2 [tex]n=16[/tex]
Standard deviation 2 [tex]\sigma_2=20[/tex]
Level of confidence [tex]\alpha=95\%=>0.95[/tex]
Generally The Hypothesis are given as
[tex]H_0:\sigma_1^2=\sigma_1^2[/tex]
[tex]H_1:\sigma_1^2\neq \sigma_1^2[/tex]
Generally the equation for test Statistics is mathematically given by
[tex]T=\frac{\sigma_1^2}{\sigma_2^2}[/tex]
[tex]T=\frac{30^2}{20^2}[/tex]
[tex]T=2.25[/tex]
Therefore
Critical Value
[tex]X=(\alpha,df_1)[/tex]
[tex]X'=(\alpha,df_2)[/tex]
Where
[tex]df=n-1[/tex]
Therefore
[tex]X=(0.95,24)[/tex]
[tex]X'=(0.95,15)[/tex]
From Table
[tex]T_{Critical}=T_x,T_{x'}[/tex]
[tex]T_{Critical}=0.41,2.701[/tex]
Therefore
[tex]T_x<T<T_{x'}[/tex]
Hence,We fail to reject the Null Hypothesis [tex]H_0[/tex]
Option A , should not be rejected