Respuesta :
Answer:
[tex]\mathbf{\tau_c =5.675 \ MPa}[/tex]
Explanation:
Given that:
The direction of the applied tensile stress =[001]
direction of the slip plane = [[tex]\bar 1[/tex]01]
normal to the slip plane = [111]
Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:
[tex]cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big][/tex]
where;
[tex][d_1\ e_1 \ f_1][/tex] = directional indices for tensile stress
[tex][d_2 \ e_2 \ f_2][/tex] = slip direction
replacing their values;
i.e [tex]d_1[/tex] = 0 ,[tex]e_1[/tex] = 0 [tex]f_1[/tex] = 1 & [tex]d_2[/tex] = -1 , [tex]e_2[/tex] = 0 , [tex]f_2[/tex] = 1
[tex]cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big][/tex]
[tex]cos \ \lambda = \dfrac{1}{\sqrt{2}}[/tex]
Also, to find the angle [tex]\phi[/tex] between the stress [001] & normal slip plane [111]
Then;
[tex]cos \ \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big][/tex]
replacing their values;
i.e [tex]d_1[/tex] = 0 ,[tex]e_1[/tex] = 0 [tex]f_1[/tex] = 1 & [tex]d_3[/tex] = 1 , [tex]e_3[/tex] = 1 , [tex]f_3[/tex] = 1
[tex]cos \ \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big][/tex]
[tex]cos \phi= \dfrac{1} {\sqrt{3} }[/tex]
However, the critical resolved SS(shear stress) [tex]\mathbf{\tau_c}[/tex] can be computed using the formula:
[tex]\tau_c = (\sigma )(cos \phi )(cos \lambda)[/tex]
where;
applied tensile stress [tex]\sigma =[/tex] 13.9 MPa
∴
[tex]\tau_c =13.9\times ( \dfrac{1}{\sqrt{2}} )( \dfrac{1}{\sqrt{3}})[/tex]
[tex]\mathbf{\tau_c =5.675 \ MPa}[/tex]