Consider a single crystal of nickel oriented such that a tensile stress is applied along a [001] direction. If slip occurs on a (111) plane and in a [101]direction and is initiated at an applied tensile stress of 13.9 MPa (2020 psi), compute the critical resolved shear stress

Respuesta :

Answer:

[tex]\mathbf{\tau_c =5.675 \ MPa}[/tex]

Explanation:

Given that:

The direction of the applied tensile stress =[001]

direction of the slip plane = [[tex]\bar 1[/tex]01]

normal to the slip plane = [111]

Now, the first thing to do is to calculate the angle between the tensile stress and the slip by using the formula:

[tex]cos \lambda = \Big [\dfrac{d_1d_2+e_1e_2+f_1f_2}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_2^2+e_2^2+f_2^2) }} \Big][/tex]

where;

[tex][d_1\ e_1 \ f_1][/tex] = directional indices for tensile stress

[tex][d_2 \ e_2 \ f_2][/tex] = slip direction

replacing their values;

i.e [tex]d_1[/tex] = 0 ,[tex]e_1[/tex] = 0 [tex]f_1[/tex] =  1 & [tex]d_2[/tex] = -1 , [tex]e_2[/tex] = 0 , [tex]f_2[/tex] = 1

[tex]cos \lambda = \Big [\dfrac{(0\times -1)+(0\times 0) + (1\times 1) }{\sqrt{(0^2+0^2+1^2)+((-1)^2+0^2+1^2) }} \Big][/tex]

[tex]cos \ \lambda = \dfrac{1}{\sqrt{2}}[/tex]

Also, to find the angle [tex]\phi[/tex] between the stress [001] & normal slip plane [111]

Then;

[tex]cos \ \phi = \Big [\dfrac{d_1d_3+e_1e_3+f_1f_3}{\sqrt{(d_1^2+e_1^2+f_1^2)+(d_3^2+e_3^2+f_3^2) }} \Big][/tex]

replacing their values;

i.e [tex]d_1[/tex] = 0 ,[tex]e_1[/tex] = 0 [tex]f_1[/tex] =  1 & [tex]d_3[/tex] = 1 , [tex]e_3[/tex] = 1 , [tex]f_3[/tex] = 1

[tex]cos \ \phi= \Big [ \dfrac{ (0 \times 1)+(0 \times 1)+(1 \times 1)} {\sqrt {(0^2+0^2+1^2)+(1^2+1^2 +1^2)} } \Big][/tex]

[tex]cos \phi= \dfrac{1} {\sqrt{3} }[/tex]

However, the critical resolved SS(shear stress) [tex]\mathbf{\tau_c}[/tex] can be computed using the formula:

[tex]\tau_c = (\sigma )(cos \phi )(cos \lambda)[/tex]

where;

applied tensile stress [tex]\sigma =[/tex] 13.9 MPa

[tex]\tau_c =13.9\times ( \dfrac{1}{\sqrt{2}} )( \dfrac{1}{\sqrt{3}})[/tex]

[tex]\mathbf{\tau_c =5.675 \ MPa}[/tex]

ACCESS MORE