Answer:
Here the general formula is
[tex]P(X\leq x_{0} )=1 - e^{\frac{-x_{0}}{2} }[/tex]
a) [tex]P(X\leq 2 )= 0.6321[/tex]
b) [tex]P(X\geq 3 )= 0.2231[/tex]
c) [tex]P(X\leq 5 )= 0.9179[/tex]
d) [tex]P(2\leq X\leq 5 )= 0.2858[/tex]
Step-by-step explanation:
Now the solutions are,
a)
[tex]P(X\leq 2 )=1 - e^{\frac{-2}{2} }\\P(X\leq 2 )= 0.6321[/tex]
b)
[tex]P(X\geq 3 )=1-[1 - e^{\frac{-3}{2} }]\\P(X\geq 3 )= 0.2231[/tex]
c)
[tex]P(X\leq 5 )=1 - e^{\frac{-5}{2} }\\P(X\leq 5 )= 0.9179[/tex]
d)
[tex]P(2\leq X\leq 5 )=1 - e^{\frac{-5}{2} }-1 - e^{\frac{-2}{2} }\\P(2\leq X\leq 5 )= 0.2858[/tex]