Answer:
The length of QR is approximately 18.3 cm
Step-by-step explanation:
The given parameters are;
The length of the side PR = 23 cm
The length of the side PQ = 22 cm
The measure of the angle QPR = 48°
By cosine rule, we have;
[tex]\overline{QR}^2 = \overline{PR}^2 + \overline{PQ}^2 - 2 \times \overline{PR} \times \overline{PQ} \times cos(\angle QPR)[/tex]
Plugging in the values gives;
[tex]\overline{QR}^2 = 23^2 + 22^2 - 2 \times 23 \times 22\times cos(48^{\circ}) \approx 335.84[/tex]
[tex]\therefore \overline{QR} \approx \sqrt{335.84} \approx 18.3[/tex]
The length of QR ≈ 18.3 cm