Respuesta :

Given:

[tex]YA[/tex] is the angle bisector of [tex]\angle XYZ[/tex].

[tex]m\angle XYZ=52^\circ[/tex]

To find:

The measure of [tex]m\angle ZYA[/tex].

Solution:

It is given that [tex]YA[/tex] is the angle bisector of [tex]\angle XYZ[/tex]. It means

[tex]m\angle XYA=m\angle ZYA[/tex]            ...(i)

Now,

[tex]m\angle XYA+m\angle ZYA=m\angle XYZ[/tex]

[tex]m\angle ZYA+m\angle ZYA=52^\circ[/tex]            [Using (i)]

[tex]2m\angle ZYA=52^\circ[/tex]

Divide both sides by 2.

[tex]m\angle ZYA=\dfrac{52^\circ}{2}[/tex]

[tex]m\angle ZYA=26^\circ[/tex]

Therefore, the required value is [tex]m\angle ZYA=26^\circ[/tex].

ACCESS MORE