Given:
[tex]YA[/tex] is the angle bisector of [tex]\angle XYZ[/tex].
[tex]m\angle XYZ=52^\circ[/tex]
To find:
The measure of [tex]m\angle ZYA[/tex].
Solution:
It is given that [tex]YA[/tex] is the angle bisector of [tex]\angle XYZ[/tex]. It means
[tex]m\angle XYA=m\angle ZYA[/tex] ...(i)
Now,
[tex]m\angle XYA+m\angle ZYA=m\angle XYZ[/tex]
[tex]m\angle ZYA+m\angle ZYA=52^\circ[/tex] [Using (i)]
[tex]2m\angle ZYA=52^\circ[/tex]
Divide both sides by 2.
[tex]m\angle ZYA=\dfrac{52^\circ}{2}[/tex]
[tex]m\angle ZYA=26^\circ[/tex]
Therefore, the required value is [tex]m\angle ZYA=26^\circ[/tex].