Answer:
65 Hz, 95 Hz, 150 Hz, 180 Hz, 310 Hz, 340 Hz
Explanation:
Given :
Frequencies of the sinusoids,
[tex]$f_{m_1}= 65 \ Hz$[/tex] , and
[tex]$f_{m_2}= 95 \ Hz$[/tex]
Sampling rate [tex]f_s = \ 245 \ Hz[/tex]
The positive frequencies at the output of the sampling system are :
[tex]$f_{o_1}=\pm f_{m_1} \pm nf_s, f_{o_2}=\pm f_{m_2} \pm nf_s $[/tex]
When n = 0,
[tex]$f_{o_1}= f_{m_1} = 65 \ Hz,\ \ f_{o_2}= f_{m_2} = 95 \ Hz $[/tex]
when n = 1,
[tex]$f_{o_1}=\pm f_{m_1} \pm f_s, \ \ f_{o_2}=\pm f_{m_2} \pm f_s $[/tex]
[tex]$f_{o_1}= \pm 65 \pm 245,\ \ f_{o_2}=\pm 95 \pm 245$[/tex]
[tex]$f_{o_1}= 180 \ Hz, 310 \ Hz,\ \ f_{o_2}= 150 \ Hz,340 \ Hz$[/tex]
When n = 2,
[tex]$f_{o_1}= \pm 65 \pm 2(245),\ \ f_{o_2}=\pm 95 \pm 2(245)$[/tex]
[tex]$f_{o_1}= 555 \ Hz, 425 \ Hz,\ \ f_{o_2}= 395 \ Hz,585 \ Hz$[/tex]
Therefore, the first six positive frequencies present in the replicated spectrum are :
65 Hz, 95 Hz, 150 Hz, 180 Hz, 310 Hz, 340 Hz