Respuesta :

Hi there!  

»»————- ★ ————-««

I believe your answer is:  

The expressions given are not equivalent.

»»————- ★ ————-««  

Here’s why:  

  • We can check if the expressions are equivalent by simplifying one of them.

⸻⸻⸻⸻

[tex]\boxed{3(a+2B)}\\\\---------\\\rightarrow3*a = 3a\\\\\rightarrow3 * 2B = 6B\\\\\text{Therefore:}\\\\3(a+2B)=\boxed{3a+6B}\\\\\text{and}\\\\\boxed{3(a+2B)\neq 3a+3B}[/tex]

⸻⸻⸻⸻

  • You can also say that they are not equivalent because it was not completely distributed.

»»————- ★ ————-««  

Hope this helps you. I apologize if it’s incorrect.  

Answer:

False

[tex]3(a + b) ≠ 3a+6b[/tex]

Step-by-step explanation:

[tex]3a + 3b \\ 3(a) + 3(b) \\ 3(a + b)[/tex]

[tex]3(a + 2b) \\ 3a+3(2b) \\ 3a+6b[/tex]

Hope it is helpful....