Respuesta :
Hi there!
»»————- ★ ————-««
I believe your answer is:
The expressions given are not equivalent.
»»————- ★ ————-««
Here’s why:
- We can check if the expressions are equivalent by simplifying one of them.
⸻⸻⸻⸻
[tex]\boxed{3(a+2B)}\\\\---------\\\rightarrow3*a = 3a\\\\\rightarrow3 * 2B = 6B\\\\\text{Therefore:}\\\\3(a+2B)=\boxed{3a+6B}\\\\\text{and}\\\\\boxed{3(a+2B)\neq 3a+3B}[/tex]
⸻⸻⸻⸻
- You can also say that they are not equivalent because it was not completely distributed.
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Answer:
False
[tex]3(a + b) ≠ 3a+6b[/tex]
Step-by-step explanation:
[tex]3a + 3b \\ 3(a) + 3(b) \\ 3(a + b)[/tex]
[tex]3(a + 2b) \\ 3a+3(2b) \\ 3a+6b[/tex]