Respuesta :

Given:

The expression is:

[tex]12x^3+16xy+4x^2[/tex]

To find:

The greatest common factor of the given expression.

Solution:

We have,

[tex]12x^3+16xy+4x^2[/tex]

The terms of the expression are [tex]12x^3, 16xy, 4x^2[/tex]. The factor forms of these terms are:

[tex]12x^3=2\times 2\times 3\times x\times x\times x[/tex]

[tex]16xy=2\times 2\times 2\times 2\times x\times y[/tex]

[tex]4x^2=2\times 2\times x\times x[/tex]

The common factors are 2, 2, x. So, the greatest common factor is:

[tex]G.C.F.=2\times 2\times x[/tex]

[tex]G.C.F.=4x[/tex]

After taking out the G.C.F., the given expression can be written as:

[tex]12x^3+16xy+4x^2=4x(3x^2+4y+x)[/tex]

Therefore, the G.C.F. of the given expression is [tex]4x[/tex].